Transport of Nitrogen Oxides through the Winter Mesopause in HAMMONIA

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES(2016)

引用 34|浏览1
暂无评分
摘要
We analyze the importance of individual transport processes for the winter polar downward transport of nitrogen oxides (NOx) from the thermosphere to the mesosphere. The downward transport of NOx produced by energetic particle precipitation induces chemical alterations in the middle atmosphere and influences ozone chemistry. However, it remains unclear how much each transport process contributes to the downward transport. We use simulations of the atmospheric general circulation and chemistry model HAMMONIA (Hamburg Model of Neutral and Ionized Atmosphere) for the extended winter 2008/2009 with a passive tracer. The model enables us to separate the contributions of advection, eddy and molecular diffusion on the total transport by switching off processes. The results show that molecular diffusion and resolved vertical mixing due to advection effectively transport NOx to the mesosphere. While the impact of molecular diffusion on the transport rapidly decreases below 0.001hPa, the impact of advection increases. Around the central date of the sudden stratospheric warming in January 2009, advection is strongly enhanced in the thermosphere and mesosphere and the downward transport through the mesopause region is almost entirely driven by advection. Eddy diffusion has limited impact on the transport in the upper mesosphere and negligible impact on the transport in the thermosphere. If eddy diffusion is enhanced as suggested by observations, it can potentially have a larger impact on transport through the mesopause than was previously assumed.
更多
查看译文
关键词
NOx transport,mesosphere,lower thermosphere,HAMMONIA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要