Little Adaptive Potential in a Threatened Passerine Bird.

Current biology : CB(2019)

引用 58|浏览27
暂无评分
摘要
Threatened species face numerous threats, including future challenges triggered by global change. A possible way to cope with these challenges is through adaptive evolution, which requires adaptive potential. Adaptive potential is defined as the genetic variance needed to respond to selection and can be assessed either on adaptive traits or fitness [1]. However, a lack of high-quality data has made it difficult to rigorously test adaptive potential in threatened species, leading to controversy over its magnitude [1-3]. Here we assess the adaptive potential of a threatened New Zealand passerine (the hihi, Notiomystis cincta) based on two populations: (1) the sole remaining natural population, on the island of Te Hauturu-o-Toi, and (2) a reintroduced population with a long-term dataset (intensively monitored for 20 years) based on the island of Tiritiri Matangi. We use molecular information (reduced representation genome sequencing, on both populations), as well as long-term phenotypic and fitness data from the Tiritiri Matangi population, to find (1) a lack of molecular genetic diversity at a genome-wide level in both populations, (2) low heritability of traits under selection and (3) negligible additive genetic variance of fitness in the Tiritiri Matangi population. In combination, these results support a lack of adaptive potential in this threatened species. We discuss our findings within the context of other passerines and methods for assessing adaptive potential, as well as the impact of these results on conservation practice, for the hihi and species of conservation concern in general.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要