Influence of Component Geometry on Patellar Mechanics in Posterior-Stabilized Rotating Platform Total Knee Arthroplasty.

The Journal of arthroplasty(2019)

引用 5|浏览20
暂无评分
摘要
BACKGROUND:Patellofemoral complications may cause pain and discomfort, sometimes leading to revision surgery for total knee arthroplasty patients, and patellar implant design has an impact on function of the reconstructed knee. The purpose of this in vivo biomechanics study was to understand the kinematic, functional, strength, and patient-reported outcome data of patients with anatomic and dome patellar implants. METHODS:Satisfactory age-matched, gender-matched, and body mass index-matched patients who underwent rotating-platform total knee arthroplasty from one joint replacement system with either dome (n = 16) or anatomic (n = 16) patellar components were tested in a human motion laboratory using high-speed stereoradiography during an unweighted seated knee extension and a weight-bearing lunge activity. Patellar kinematics, range of motion, strength, and patient-reported outcomes were compared between subjects with anatomic or dome component geometry. RESULTS:Both groups of patients achieved similar functional knee range of motion and reported similar outcomes and satisfaction. On average, patients with the anatomic component had 36% greater extensor strength compared with dome subjects. Patients with anatomic patellar components demonstrated significantly greater flexion of the patella relative to the femur and lower external rotation during the weighted lunge activity. CONCLUSIONS:Relative to the modified dome geometry, patients with anatomic patellar geometry achieved greater patellar flexion which may better replicate normal patellar motion. Patients with anatomic implants may regain more extensor strength compared to patients with dome implants due to geometric differences in the patellar component designs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要