The occipitoatlantal capsular ligaments are the primary stabilizers of the occipitoatlantal joint in the craniocervical junction: a finite element analysis.

Journal of neurosurgery. Spine(2019)

引用 17|浏览2
暂无评分
摘要
OBJECTIVE:There is contradictory evidence regarding the relative contribution of the key stabilizing ligaments of the occipitoatlantal (OA) joint. Cadaveric studies are limited by the nature and the number of injury scenarios that can be tested to identify OA stabilizing ligaments. Finite element (FE) analysis can overcome these limitations and provide valuable data in this area. The authors completed an FE analysis of 5 subject-specific craniocervical junction (CCJ) models to investigate the biomechanics of the OA joint and identify the ligamentous structures essential for stability. METHODS:Isolated and combined injury scenarios were simulated under physiological loads for 5 validated CCJ FE models to assess the relative role of key ligamentous structures on OA joint stability. Each model was tested in flexion-extension, axial rotation, and lateral bending in various injury scenarios. Isolated ligamentous injury scenarios consisted of either decreasing the stiffness of the OA capsular ligaments (OACLs) or completely removing the transverse ligament (TL), tectorial membrane (TM), or alar ligaments (ALs). Combination scenarios were also evaluated. RESULTS:An isolated OACL injury resulted in the largest percentage increase in all ranges of motion (ROMs) at the OA joint compared with the other isolated injuries. Flexion, extension, lateral bending, and axial rotation significantly increased by 12.4% ± 7.4%, 11.1% ± 10.3%, 83.6% ± 14.4%, and 81.9% ± 9.4%, respectively (p ≤ 0.05 for all). Among combination injuries, OACL+TM+TL injury resulted in the most consistent significant increases in ROM for both the OA joint and the CCJ during all loading scenarios. OACL+AL injury caused the most significant percentage increase for OA joint axial rotation. CONCLUSIONS:These results demonstrate that the OACLs are the key stabilizing ligamentous structures of the OA joint. Injury of these primary stabilizing ligaments is necessary to cause OA instability. Isolated injuries of TL, TM, or AL are unlikely to result in appreciable instability at the OA joint.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要