Difference of respiration-based approaches for quantifying heterotrophic biomass in activated sludge of biological wastewater treatment plants.

Science of The Total Environment(2019)

引用 26|浏览7
暂无评分
摘要
Estimation of heterotrophic biomass concentration in activated sludge is essential to the design, operation and management of activated sludge process for wastewater treatment plants (WWTPs), and many methods have been developed for such a purpose. In this study, three respiration-based methods: the Exponential-growth-rate-based method (Exp-M), the Maximum-respiration-rate-based method (Max-M) and the Endogenous-respiration-rate-based method (End-M), which are frequently used for determining kinetic parameters in activated sludge models, were comparatively examined using experimental results from both full-scale municipal WWTPs and laboratory-scale reactors. Our study revealed the pros and cons of each method, which is valuable for method selection in different applications. The End-M can estimate all the fraction of biomass. However, the proper control of measuring condition is of great challenge. The Exp-M can only determine the exponential growth part of biomass as conditions employed during measuring may make a considerable part of biomass in a nongrowth status, resulting underestimation or even failure of calculation. The Max-M can determine the viable biomass including the nongrowth part, and it is recommended for rapid assessment of biomass. The Max-M was modified after the introduction of a coefficient SOURSRT=0 (the specific oxygen utilization rate when the sludge retention time was assumed zero) and was validated by using the experimental results reported in previous studies. Because of its simplicity and much improved accuracy, the modified Max-M method is able to provide more useful information about activated sludge compositions and has a promising application potential in wastewater treatment plants.
更多
查看译文
关键词
Activated sludge,Biomass estimation,Heterotrophic biomass,Respiration,Wastewater treatment plants (WWTPs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要