PUSHing Core-Collapse Supernovae to Explosions in Spherical Symmetry III: Nucleosynthesis Yields

ASTROPHYSICAL JOURNAL(2019)

引用 83|浏览15
暂无评分
摘要
In a previously presented proof-of-principle study, we established a parameterized spherically symmetric explosion method (PUSH) that can reproduce many features of core-collapse supernovae (CCSNe) for a wide range of preexplosion models. The method is based on the neutrino-driven mechanism and follows collapse, bounce, and explosion. There are two crucial aspects of our model for nucleosynthesis predictions. First, the mass cut and explosion energy emerge simultaneously from the simulation (determining, for each stellar model, the amount of Fe-group ejecta). Second, the interactions between neutrinos and matter are included consistently (setting the electron fraction of the innermost ejecta). In the present paper, we use the successful explosion models from Ebinger et al. that include two sets of pre-explosion models at solar metallicity, with combined masses between 10.8 and 120 M-circle dot. We perform systematic nucleosynthesis studies and predict detailed isotopic yields. The resulting Ni-56 ejecta are in overall agreement with observationally derived values from normal CCSNe. The Fe-group yields are also in agreement with derived abundances for metal-poor star HD. 84937. We also present a comparison of our results with observational trends in alpha element to iron ratios.
更多
查看译文
关键词
Galaxy: evolution,nuclear reactions,nucleosynthesis, abundances,supernovae: general,supernovae: individual (SN 1987A)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要