Sialylation Of Muc4 Beta N-Glycans By St6gal1 Orchestrates Human Airway Epithelial Cell Differentiation Associated With Type-2 Inflammation

JCI INSIGHT(2019)

引用 13|浏览48
暂无评分
摘要
Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4 beta isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4 beta, thereby altering its function and that the beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs), we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4 beta and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4 beta altered its lectin binding and secretion. Both ST6GAL1 and MUC4 beta inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4 beta in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.
更多
查看译文
关键词
Asthma,Inflammation,Pulmonology,Th2 response
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要