Steerable Wavelet Scattering for 3D Atomic Systems with Application to Li-Si Energy Prediction.

arXiv: Computational Physics(2018)

引用 24|浏览28
暂无评分
摘要
A general machine learning architecture is introduced that uses wavelet scattering coefficients of an inputted three dimensional signal as features. Solid harmonic wavelet scattering transforms of three dimensional signals were previously introduced in a machine learning framework for the regression of properties of small organic molecules. Here this approach is extended for general steerable wavelets which are equivariant to translations and rotations, resulting in a sparse model of the target function. The scattering coefficients inherit from the wavelets invariance to translations and rotations. As an illustration of this approach a linear regression model is learned for the formation energy of amorphous lithium-silicon material states trained over a database generated using plane-wave Density Functional Theory methods. State-of-the-art results are produced as compared to other machine learning approaches over similarly generated databases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要