Maleimide–thiol adducts stabilized through stretching

NATURE CHEMISTRY(2019)

引用 147|浏览36
暂无评分
摘要
Maleimide–thiol reactions are widely used to produce protein–polymer conjugates for therapeutics. However, maleimide–thiol adducts are unstable in vivo or in the presence of thiol-containing compounds because of the elimination of the thiosuccinimide linkage through a retro-Michael reaction or thiol exchange. Here, using single-molecule force spectroscopy, we show that applying an appropriate stretching force to the thiosuccinimide linkage can considerably stabilize the maleimide–thiol adducts, in effect using conventional mechanochemistry of force-accelerated bond dissociation to unconventionally stabilize an adjacent bond. Single-molecule kinetic analysis and bulk structural characterizations suggest that hydrolysis of the succinimide ring is dominant over the retro-Michael reaction through a force-dependent kinetic control mechanism, and this leads to a product that is resistant to elimination. This unconventional mechanochemical approach enabled us to produce stable polymer–protein conjugates by simply applying a mechanical force to the maleimide–thiol adducts through mild ultrasonication. Our results demonstrate the great potential of mechanical force for stimulating important productive chemical transformations.
更多
查看译文
关键词
Polymer chemistry,Single-molecule biophysics,Chemistry/Food Science,general,Analytical Chemistry,Organic Chemistry,Physical Chemistry,Inorganic Chemistry,Biochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要