Mechanism of Brassica oleracea performance in bovine infectious mastitis by bioinformatic analysis.

Microbial Pathogenesis(2019)

引用 14|浏览9
暂无评分
摘要
Bovine mastitis affects dairy cattle worldwide and, despite the existing therapeutic measures, is not totally under control, leading to the need to develop alternative strategies. Brassica oleracea is a phytochemical commonly used in the control and prevention of human and animal diseases. The use of this plant in the treatment of infectious bovine mastitis has been little referenced in the literature and its molecular mechanism of action in this disease has not been clarified yet. This study aimed to reveal, through bioinformatic analysis, the molecular mechanism of action of Brassica oleracea in bovine mastitis. We investigated genes expressed in the signaling pathways of bovine mastitis and Brassica oleracea performance and elaborated the Venn diagram. A gene network was developed using the STRING 10 database. Leader genes were identified by calculating the weighted number of links (WNL). The NetworkAnalyzer plugin for Cytoscape software was used to characterize network topology. For the visualization of highly interconnected regions in the network, the MCODE was used. The BINGO and GFD-Net plugins were used to perform the ontological analysis. The TP53 and MTOR leader genes were identified in the sub-networks of the bovine mastitis signaling pathway and Brassica oleracea performance, respectively. Topological analysis confirmed the leader condition of the genes. Although the overlap of genes in the Venn diagram was not observed, the leader genes were found to be interconnected (confidence = 0.9). In the network that interconnected the leader genes two molecular complexes were detected and the ontological analysis revealed biological processes, cellular components and important molecular functions. It was concluded that Brassica oleracea may be a promising candidate to be included in a mammalian herbal cocktail against infectious bovine mastitis by interfering in the mechanisms of action of genes such as MTOR and TP53.
更多
查看译文
关键词
Infection,Prevention,Molecular mechanism,Phytotherapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要