Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium.

PLOS PATHOGENS(2019)

引用 48|浏览80
暂无评分
摘要
Intestinal infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium appeared strikingly similar with 97% sequence identity. The two species share 98% of protein-coding genes, with an average sequence identity of 97.3% at the amino acid level. Genome comparison identified large continuous parts of the genome (up to several 100 kb) showing almost 100% sequence identity between S. bovis and S. haematobium. It is unlikely that this is a result of genome conservation and provides further evidence of natural interspecific hybridization between S. bovis and S. haematobium. Our results suggest that foreign DNA obtained by interspecific hybridization was maintained in the population through multiple meiosis cycles and that hybrids were sexually reproductive, producing viable offspring. The S. bovis genome assembly forms a highly valuable resource for studying schistosome evolution and exploring genetic regions that are associated with species-specific phenotypic traits. Author summary In this article we detail the assembly and functional annotation of the Schistosoma bovis genome. S. bovis is a parasitic flatworm that primarily infects bovines, with important economic consequences in affected countries. However, it is also a close relative of the human carcinogenic parasite Schistosoma haematobium which is a serious health issue in many endemic countries in Sub-Saharan Africa. The close relationship and overlapping geographical distribution of S. bovis and S. haematobium allows these to hybridise in the wild increasing their genetic diversity and presenting the risk of zoonotic transmission, i.e. the transmission from animals to humans. The hybridization between human and ruminant schistosomes is of particular interest as interspecific hybridization may have dramatic impacts on transmission rates, disease dynamics, control interventions and parasite evolution. By whole-genome sequencing and comparative genomics we present evidence that fertile hybrids are indeed present in the wild, presenting the potential risk of transmission from animal reservoirs to humans.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要