Crispr-Cas9 Interrogation Of A Putative Fetal Globin Repressor In Human Erythroid Cells

PLOS ONE(2019)

引用 25|浏览37
暂无评分
摘要
Sickle Cell Disease and beta-thalassemia, which are caused by defective or deficient adult beta-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Persistent expression of the fetal beta-like globin, also known gamma-globin, can ameliorate both disorders by serving in place of the adult beta-globin as a part of the fetal hemoglobin tetramer (HbF). Here we use CRISPR-Cas9 gene editing to explore a potential gamma-globin silencer region upstream of the delta-globin gene identified by comparison of naturally-occurring deletion mutations associated with up-regulated gamma-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of HbF. Screening of individual sgRNAs in one sub-region revealed three single guides that caused increases gamma-globin expression. Deletion of the 1.7 kb region in HUDEP-2 clonal sublines, and in colonies derived from CD34+ hematopoietic stem/progenitor cells (HSPCs), does not cause significant up-regulation of gamma-globin. These data suggest that the 1.7 kb region is not an autonomous gamma-globin silencer, and thus by itself is not a suitable therapeutic target for gene editing treatment of beta-hemoglobinopathies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要