The study of Fe-doped CdS nanoparticle-assisted photocatalytic degradation of organic dye in wastewater

Applied Nanoscience(2019)

引用 68|浏览11
暂无评分
摘要
Size-tunable nanoparticles (NPs) for pristine cadmium sulfide (CdS) and iron (Fe)-doped (5, 10 and 15%) CdS were synthesized using facile chemical co-precipitation. Size-controlled NPs were prepared with thioglycolic acid (TGA) as the capping agent and their structural, optical, morphological and physiochemical evaluations were performed using X-ray diffraction (XRD), UV–visible spectroscopy, Raman spectroscopy, field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). XRD revealed single cubic phase of CdS and later broader peaks upon mixing of Fe, and intensive absorption was recorded in the visible regime upon doping with redshift. FESEM confirmed spherical nanoparticles of Fe–CdS, and Cd–S linkage along with other functional groups was recognized by FTIR. Cd 1− x Fe x S ( x = 0, 0.05, 0.10 and 0.15) powder was used as the photocatalyst for methylene blue (MB) degradation in visible light and catalyst in NaBH 4 ’s presence. The control CdS bleached MB faster than doped but doped CdS showed higher catalytic degradation. The Fe-doped CdS NPs showed superior catalytic potential compared to undoped CdS which suggests their use in dye industries, especially leather and tanneries. Additionally, NPs not only show superior catalytic characteristics but also help in cost reduction and complete removal of dyes for wastewater management.
更多
查看译文
关键词
Metal oxide,Graphene,Sol–gel,XRD,Photocatalytic activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要