Chitosan-DNA polyelectrolyte complex: Influence of chitosan characteristics and mechanism of complex formation.

Lourdes Mónica Bravo-Anaya,Karla Gricelda Fernández-Solís,Julien Rosselgong, Jesrael Luz Elena Nano-Rodríguez,Francisco Carvajal,Marguerite Rinaudo

International journal of biological macromolecules(2019)

引用 53|浏览8
暂无评分
摘要
Polyelectrolyte complexes formed between DNA and chitosan present different and interesting physicochemical properties combined with high biocompatibility; they are very useful for biomedical applications. DNA in its double helical structure is a semi-rigid polyelectrolyte chain. Chitosan, an abundant polysaccharide in nature, is considered as one of the most attractive vectors due to its biocompatibility and biodegradability. Here we study chitosan/DNA polyelectrolyte complex formation mechanism and the key factors of their stability. Compaction process of DNA with chitosan was monitored in terms of the ζ-potential and hydrodynamic radius variation as a function of charge ratios between chitosan and DNA. The influence of chitosan degree of acetylation (DA) and its molecular weight on the stoichiometry of chitosan/DNA complexes characteristics was also studied. It is shown that the isoelectric point of chitosan/DNA complexes, as well as their stability, is directly related to the degree of protonation of chitosan (depending on pH), to the DA and to the external salt concentration. It is demonstrated that DNA compaction process corresponds to an all or nothing like-process. Finally, since an important factor in cell travelling is the buffering effect of the vector used, we demonstrated the essential role of free chitosan on the proton-sponge effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要