Genetic analysis of skinfold thickness and its association with body condition score and milk production traits in Chinese Holstein population.

H Zhang,A Liu,X Li, W Xu,R Shi, H Luo, G Su, G Dong,G Guo,Y Wang

Journal of dairy science(2019)

引用 8|浏览26
暂无评分
摘要
The skin has many important roles in dairy cattle, and skinfold thickness could be used as an indicator of body fat deposition. The objectives of this study were to estimate genetic parameters of skinfold thickness and to explore its association with body condition score (BCS) and milk production traits in a Chinese Holstein population. Skinfold thicknesses over the neck (STN) and the last rib (STR), BCS, and test-day records of milk production traits were available for 6,416 lactating Holstein cows in the summers of 2015 and 2016 in Beijing, China. Multi-trait animal models were used to estimate variance and covariance components using the DMU software. The average STN was 7.15 ± 1.28 mm, and the average STR was 11.76 ± 1.95 mm (mean ± standard deviation). Estimated heritability was 0.13 ± 0.03 for STN and 0.26 ± 0.04 for STR. We detected a high genetic correlation (0.79 ± 0.08; heritability ± standard error) between STN and STR. Genetic correlations between skinfold thickness and BCS were low to moderate: 0.18 between STR and BCS, and 0.33 between STN and BCS. Genetic correlations between skinfold thickness and milk yield, milk fat percentage, and milk protein percentage were negligible, ranging from -0.02 to 0.15. Collectively, skinfold thickness is characterized as a trait with moderate heritability. Skinfold thickness is sensitive to changes in body condition or fat deposition across parities and lactation stages in milking cows, and we confirmed the complementary nature of skinfold thickness and BCS genetically as well as phenotypically by comparing their changing trends throughout lactation and across lactations. The use of skinfold thickness, together with BCS, can assist in the monitoring of changes in body fat deposition to achieve higher management precision.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要