A Comparative Study of Molybdenum Carbonyl and Oxomolybdenum Derivatives Bearing 1,2,3-Triazole or 1,2,4-Triazoles in Catalytic Olefin Epoxidation.

MOLECULES(2019)

引用 8|浏览17
暂无评分
摘要
The molybdenum(0)-carbonyl-triazole complexes [Mo(CO)(3)(L)(3)] [L = 1,2,3-triazole (1,2,3-trz) or 1,2,4-triazole (1,2,4-trz)] have been prepared and examined as precursors to molybdenum(VI) oxide catalysts for the epoxidation of cis-cyclooctene. Reaction of the carbonyl complexes with the oxidant tert-butyl hydroperoxide (TBHP) (either separately or in situ) gives oxomolybdenum(VI) hybrid materials that are proposed to possess one-dimensional polymeric structures in which adjacent oxo-bridged dioxomolybdenum(VI) moieties are further linked by bidentate bridging triazole (trz) ligands. A pronounced ligand influence on catalytic performance was found and the best result (quantitative epoxide yield within 1 h at 70 degrees C) was obtained with the 1,2,3-triazole oxomolybdenum(VI) hybrid. Both molybdenum oxide-triazole compounds displayed superior catalytic performance in comparison with the known hybrid materials [MoO3(trz)(0.5)], which have different structures based on organic-inorganic perovskite-like layers. With aqueous H2O2 as the oxidant instead of TBHP, all compounds were completely soluble and active. A pronounced ligand influence on catalytic performance was only found for the hybrids [MoO3(trz)(0.5)], and only the 1,2,4-trz compound displayed reaction-induced self-precipitation behavior. An insight into the type of solution species that may be involved in the catalytic processes with these compounds was obtained by separately treating [MoO3(1,2,4-trz)(0.5)] with excess H2O2, which led to the crystallization of the complex (NH4)(1.8)(H3O)(0.2)[Mo2O2((2)-O)(O-2)(4)(1,2,4-trz)]H2O. The single-crystal X-ray investigation of this complex reveals an oxo-bridged dinuclear structure with oxodiperoxo groups being further linked by a single triazole bridge.
更多
查看译文
关键词
molybdenum,carbonyl complexes,triazole,oxidative decarbonylation,epoxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要