Hollow-core fibres for temperature-insensitive fibre optics and its demonstration in an Optoelectronic oscillator

SCIENTIFIC REPORTS(2018)

引用 13|浏览66
暂无评分
摘要
Many scientific and practical applications require the propagation time through cables to be well defined and known, e.g., an error in the evaluation of signal propagation time in the OPERA experiment in 2011 initially erroneously concluded that Neutrinos are faster than light. In fact, there are many other physical infrastructures such as synchrotrons, particle accelerators, telescope arrays and phase arrayed antennae that also rely on precise time synchronization. Time synchronization is also of importance in new practical applications like autonomous manufacturing (e.g., synchronization of assembly line robots) and upcoming 5G networks. Even when the propagation time through a coaxial cable or optical fibre is carefully calibrated, it is affected by changes in the ambient temperature, posing a serious technological challenge. We show how hollow-core optical fibres can address this issue.
更多
查看译文
关键词
Fibre optics and optical communications,Photonic crystals,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要