Encapsulation of AgNPs within Zwitterionic Hydrogel for Highly Efficient and Antifouling Catalysis in Biological Environments.

LANGMUIR(2019)

引用 17|浏览6
暂无评分
摘要
Silver nanoparticles (AgNPs) have been widely used as catalysts in a variety of chemical reactions owing to their unique surface and electronic properties, but their practical applications have been hindered by severe aggregation. The immobilization of AgNPs is crucial to preventing their aggregation or precipitation as well as to improving their reusability. Herein, we developed a facile route for the reductant-free in situ synthesis of AgNPs in zwitterionic hydrogels. Via this method, the embedded AgNPs had a uniform distribution, high activity, and antibiofouling capability. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using polycarboxybetaine-AgNPs (PCB-AgNPs) could achieve >95% conversion efficiency within 5 min. Meanwhile, the normalized rate constant k(nor) (10.617 s(-1) mmol(-1)) was higher than that of most of the reported immobilized nanocatalysts. More importantly, in a biofouling environment, PCB-AgNPs could still exhibit >97% initial catalytic activity while AgNPs in the PSB or PHEMA hydrogel lost similar to 60% activity. This strategy holds great potential for the immobilization of nanoparticle catalysts, especially for applications in biological environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要