On the number of driver nodes for controlling a Boolean network when the targets are restricted to attractors.

Journal of theoretical biology(2018)

引用 5|浏览6
暂无评分
摘要
It is known that many driver nodes are required to control complex biological networks. Previous studies imply that O(N) driver nodes are required in both linear complex network and Boolean network models with N nodes if an arbitrary state is specified as the target. In order to cope with this intrinsic difficulty, we consider a special case of the control problem in which the targets are restricted to attractors. For this special case, we mathematically prove under the uniform distribution of states in basins that the expected number of driver nodes is only O(log2N+log2M) for controlling Boolean networks, where M is the number of attractors. Since it is expected that M is not very large in many practical networks, the new model requires a much smaller number of driver nodes. This result is based on discovery of novel relationships between control problems on Boolean networks and the coupon collector's problem, a well-known concept in combinatorics. We also provide lower bounds of the number of driver nodes as well as simulation results using artificial and realistic network data, which support our theoretical findings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要