Molecular Mechanism of Action of RORγt Agonists and Inverse Agonists: Insights from Molecular Dynamics Simulation.

MOLECULES(2018)

引用 20|浏览24
暂无评分
摘要
As an attractive drug-target, retinoic acid receptor-related orphan receptor-gamma-t (RORγt) has been employed widely to develop clinically relevant small molecular modulators as potent therapy for autoimmune disease and cancer, but its molecular mechanism of action (MOA) remains unclear. In the present study, we designed and discovered two novel RORγt ligands that are similar in structure, but different in efficacy. Using fluorescence resonance energy transfer (FRET) assay, compound 1 was identified as an agonist with an EC50 of 3.7 μM (max. act.: 78%), while compound 2 as an inverse agonist with an IC50 value of 2.0 μM (max. inh.: 61%). We performed molecular dynamics (MD) simulations, and elucidated the MOA of RORγt agonist and inverse agonist. Through the analyses of our MD results, we found that, after RORγt is bound with the agonist 1, the side chain of Trp317 stays in the gauche- conformation, and thus helps to form the hydrogen bond, His479-Trp502, and a large hydrophobic network among H11, H11', and H12. All these interactions stabilize the H12, and helps the receptor recruit the coactivator. When the RORγt is bound with the inverse agonist 2, the side chain of Trp317 is forced to adopt the trans conformation, and these presumed interactions are partially destroyed. Taken together, the critical role of residue Trp317 could be viewed as the driving force for the activation of RORγt.
更多
查看译文
关键词
RORt, molecular mechanism of action (MOA), agonist, inverse agonist
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要