(-)-Epigallocatechin-3-gallate Down-regulates Doxorubicin-induced Overexpression of P-glycoprotein Through the Coordinate Inhibition of PI3K/Akt and MEK/ERK Signaling Pathways.

Hana Satonaka, Kumiki Ishida,Miho Takai, Ryoji Koide, Ryota Shigemasa,Jun Ueyama,Tetsuya Ishikawa,Kazuhiko Hayashi,Hidemi Goto,Shinya Wakusawa

ANTICANCER RESEARCH(2017)

引用 35|浏览9
暂无评分
摘要
Background/Aim: (-)-Epigallocatechin-3-gallate (EGCG) has been indicated to regulate the function of P-glycoprotein (P-gp), which is a drug transporter encoded by the MDR1 (ABCB1) gene. P-gp expression is induced by doxorubicin (DOX). We aimed to clarify the mechanisms and inhibitory effects of EGCG on DOX-induced P-gp expression in HepG2 cells. Materials and Methods: Rhodamine 123 (Rho123) was used for P-gp substrate. Western blotting and polymerase chain reactions (PCRs) were conducted using specific antibodies and primer sets. Results: The DOX-pretreated cells accumulated a significantly decreased amount of Rho123), than control cells; however, the cells pretreated with EGCG and DOX, in combination, accumulated Rho123 more than DOX-pretreated cells. DOX induced the overexpression of MDR1 mRNA and increased the phosphorylation of Akt, ERK1/2, p38 MAPK and JNK. EGCG significantly inhibited the phosphorylation of Akt and ERK. The DOX-induced P-gp overexpression was partially suppressed by an inhibitor of MEK1/2 (U0126), but not by a PI3K inhibitor (LY294002). Interestingly, the expression of P-gp was synergistically inhibited by combined treatment of U0126 with LY294002 and also inhibited by an mTORC1 inhibitor, rapamycin. Conclusion: EGCG inhibited DOX-induced overexpression of P-gp through the coordinate inhibitory action on MEK/ERK and PI3K/Akt signaling pathways.
更多
查看译文
关键词
EGCG,P-glycoprotein,MEK/ERK,PI3K/Akt,doxorubicin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要