Synthesis of cytotoxically active derivatives based on alkylated 2,3-seco-triterpenoids.

European Journal of Medicinal Chemistry(2017)

引用 24|浏览22
暂无评分
摘要
Extremely low content of biologically active triterpenoids with the fragmented or contracted ring A extractable from plants is the main disadvantage of their use in drug discovery and practical pharmacology. Development of new methods for synthesis of these compounds and their structural analogs from bioavailable triterpene precursors gives an opportunity to obtain promising agents for pharmacology with excellent yields. A new approach to synthesis of alkylated A-seco-triterpenoids, including the Beckmann fragmentation of 3-methyl-substituted allobetulin or betulinic acid methyl ester with 2-hydroxyimino group in the ring A was proposed. These compounds were used to prepare a series of 2,3-seco- and five-membered ring A lupane and oleanane derivatives, cytotoxicity of which was screened in vitro against the cancer (HEp-2, HCT 116, A549, RD TE32, MS) and non-cancerous (HEK 293) cell lines. Methyl 3-bromomethyl-1-cyano-3-oxo-2,3-seco-2-norlup-20(29)-en-30-al-28-oate was selected as the most active compound (IC50 3.4–10.4 μM for HEp-2, HCT 116, RD TE32, MS cells) capable of triggering caspase-8-mediated apoptosis in HCT 116 cells accompanied by typical apoptotic chromatin condensation, without any loss of mitochondrial membrane permeability.
更多
查看译文
关键词
A-seco-triterpenoids,Betulin,Grignard reaction,Cancer cells,MTT assay,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要