MiR-31 is involved in the high glucose-suppressed osteogenic differentiation of human periodontal ligament stem cells by targeting Satb2.

AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH(2017)

引用 33|浏览4
暂无评分
摘要
Diabetes mellitus (DM) is a chronic metabolic disease that gives rise to impaired bone remodeling. Increasing evidences have shown that miRNAs are associated with osteogenic differentiation of stem cells. However, the underlying mechanism that links DM-induced HG conditions and impaired osteogenic differentiation capacity of periodontal ligament stem cells (PDLSCs) still remains unclear. In this study, we found that diabetic mice with increased miR-31 level in periodontal ligaments exhibited greater bone loss. In vitro, the high expression of miR-31 is associated with the impaired osteogenic differentiation ability of PDLSCs in high glucose environment. Furthermore, miR-31 inhibitors increased mineralized bone matrix formation and raised Runx2, Osx and OCN expression at both mRNA and protein levels. However, PDLSCs pretreated with miR-31 mimics decreased bone matrix formation and reduced Runx2, Osx and OCN expression level in high glucose microenvironment. Moreover, Satb2 was identified as a target of miR-31 which directly binds to its 3'-untranslated region. To further elucidate the effect of Satb2 in miR-31-mediated osteogenic differentiation, PDLSCs were transfected with Satb2 siRNA and miR-31 inhibitors. The results showed that Satb2 siRNA inhibited osteogenic differentiation of PDLSCs in HG, whereas miR-31 inhibitors reversed the repression of osteogenic differentiation in Satb2 siRNA transfected PDLSCs. Taken together, these results demonstrate that miR-31 is involved in the high glucose-suppressed osteogenic differentiation of PDLSCs by targeting Satb2.
更多
查看译文
关键词
MiR-31,high glucose,osteogenic differentiation,periodontal ligament stem cells,Satb2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要