Combinatorial delivery of superparamagnetic iron oxide nanoparticles (γFe2O3) and doxorubicin using folate conjugated redox sensitive multiblock polymeric nanocarriers for enhancing the chemotherapeutic efficacy in cancer cells.

Materials science & engineering. C, Materials for biological applications(2017)

引用 24|浏览3
暂无评分
摘要
Redox sensitive, folate conjugated multiblock polymeric system of (-PLGA-PEG-PLGA-urethane-ss-) demonstrated self-assembly into stable nanoplatforms. The polymeric nanocarriers were encapsulated with doxorubicin and highly crystalline γFe2O3 superparamagnetic iron oxide nanoparticles (SPIONs), for co-delivery of the same to cancer cells, with average particle size of ~170nm and zeta potential of ~-33mV. Furthermore, the designed formulation was evaluated for protein adsorption, hemo-cytocompatibility and stability. Glutathione (GSH) induced redox sensitivity of the nanocarriers was depicted by ~4.47 fold increase in drug release in the presence of 10mM GSH. In vitro cellular uptake studies of the designed nanocarriers showed synergistic cytotoxic effect in folate overexpressing cells (HeLa and MDA-MB-231), after subjecting the cells to radio frequency (RF) induced hyperthermia (~43°C). Negligible effect of the combinatorial therapy was observed in normal cells (L929). The developed polymeric system depicted facile synthesis, reproducibility and potential for achieving combinatorial and targeted delivery of drug and SPIONs to cancer cells. This combinatorial approach can help in achieving better therapeutic effect with minimal side effects of chemotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要