Two-component regulatory system ActS/ActR is required for Sinorhizobium meliloti adaptation to oxidative stress.

Microbiological research(2017)

引用 16|浏览5
暂无评分
摘要
The two-component system ActS/ActR plays important roles in bacterial adaptation to abiotic stress, including acid tolerance and oxidant resistance. However, the underlying regulatory mechanism is not clear. In this study, we found that the ActS/ActR system is required for adaptation to oxidative stress by regulating the transcription of the genes actR, katB, gshA and gshB1. The actS and actR mutants were sensitive to low pH and oxidants such as H2O2, oxidized glutathione (GSSG) and sodium nitroprusside (SNP). The expression of actR by using a plasmid rescued the defect of SNP sensitivity for all actS and actR mutants. The expression of actS and actR were suppressed by treatment with H2O2. The expression of actS, actR, oxyR, katA and katB was required for ActS and ActR under normal conditions. The induction of katB, gshA and gshB1 depended on ActS and ActR during treatment with H2O2 and SNP. Our findings revealed that the ActS/ActR system is a key redox regulator in S. meliltoi and provides a new cue to understanding Rhizobium-legume symbiosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要