Neural Correlates of Mirror Visual Feedback-Induced Performance Improvements: A Resting-State fMRI Study.

FRONTIERS IN HUMAN NEUROSCIENCE(2017)

引用 14|浏览17
暂无评分
摘要
Mirror visual feedback (MVF) is a promising approach to enhance motor performance without training in healthy adults as well as in patients with focal brain lesions. There is preliminary evidence that a functional modulation within and between primary motor cortices as assessed with transcranial magnetic stimulation (TMS) might be one candidate mechanism mediating the observed behavioral effects. Recently, studies using task-based functional magnetic resonance imaging (fMRI) have indicated that MVF-induced functional changes might not be restricted to the primary motor cortex (M1) but also include higher order regions responsible for perceptual-motor coordination and visual attention. However, aside from these instantaneous task-induced brain changes, little is known about learning-related neuroplasticity induced by MVF. Thus, in the present study, we assessed MVF-induced functional network plasticity with resting-state fMRI (rs-fMRI). We performed rs-fMRI of 35 right-handed, healthy adults before and after performing a complex ball-rotation task. The primary outcome measure was the performance improvement of the untrained left hand (LH) before and after right hand (RH) training with MVF (mirror group [MG], n = 17) or without MVF (control group [CG], n = 18). Behaviorally, the MG showed superior performance improvements of the untrained LH. In resting-state functional connectivity (rs-FC), an interaction analysis between groups showed changes in left visual cortex (V1, V2) revealing an increase of centrality in the MG. Within group comparisons showed further functional alterations in bilateral primary sensorimotor cortex (SM1), left V4 and left anterior intraparietal sulcus (aIP) in the MG, only. Importantly, a correlation analysis revealed a linear positive relationship between MVF-induced improvements of the untrained LH and functional alterations in left SM1. Our results suggest that MVF-induced performance improvements are associated with functional learning-related brain plasticity and have identified additional target regions for non-invasive brain stimulation techniques, a finding of potential interest for neurorehabilitation.
更多
查看译文
关键词
mirror visual feedback (MVF),resting state functional connectivity,motor performance,neurorehabilitation,neuroplasticity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要