Filmless methods for quality assurance of Tomotherapy using ArcCHECK.

B Yang, W K R Wong,H Geng, W W Lam, Y W Ho, W M Kwok,K Y Cheung, S K Yu

MEDICAL PHYSICS(2017)

引用 3|浏览2
暂无评分
摘要
Purpose: Tomotherapy delivers an intensity-modulated radiation therapy (IMRT) treatment by the synchronization of gantry rotation, multileaf collimator (MLC), and couch movement. This dynamic nature makes the quality assurance (QA) important and challenging. The purpose of this study is to develop some methodologies using an ArcCHECK for accurate QA measurements of the gantry angle and speed, MLC synchronization and leaf open time, couch translation per gantry rotation, couch speed and uniformity, and constancy of longitudinal beam profile for a Tomotherapy unit. Methods: Four test plans recommended by AAPM Task Group 148 (TG148) and the manufacturer were chosen for this study. Helical and static star shot tests are used for checking the leaves opened at the expected gantry angles. Another helical test is to verify the couch traveled the expected distance per gantry rotation. The final test is for checking the couch speed constancy with a static gantry. ArcCHECK can record the detector signal every 50 ms as a movie file, and has a virtual inclinometer for gantry angle measurement. These features made the measurement of gantry angle and speed, MLC synchronization and leaf open time, and longitudinal beam profile possible. A shaping parameter was defined for facilitating the location of the beam center during the plan delivery, which was thereafter used to calculate the couch translation per gantry rotation and couch speed. The full width at half maximum (FWHM) was calculated for each measured longitudinal beam profile and then used to evaluate the couch speed uniformity. Furthermore, a mean longitudinal profile was obtained for constancy check of field width. The machine trajectory log data were also collected for comparison. Inhouse programs were developed in MATLAB to process both the ArcCHECK and machine log data. Results: The deviation of our measurement results from the log data for gantry angle was calculated to be less than 0.4 degrees. The percentage differences between measured and planned leaf open time were found to be within 0.5% in all the tests. Our results showed mean values of MLC synchronization of 0.982, 0.983, and 0.995 at static gantry angle 0 degrees, 45 degrees, and 135 degrees, respectively. The mean value of measured couch translation and couch speed by ArcCHECK had less than 0.1% deviation from the planned values. The variation in the value of FWHM suggested the couch speed uniformity was better than 1%. The mean of measured longitudinal profiles was suitable for constancy check of field width. Conclusion: Precise and efficient methods for measuring the gantry angle and speed, leaf open time, couch translation per gantry rotation, couch speed and uniformity, and constancy of longitudinal beam profile of Tomotherapy using ArcCHECK have been developed and proven to be accurate compared with machine log data. Estimation of the Tomotherapy binary MLC leaf open time is proven to be precise enough to verify the leaf open time as small as 277.8 ms. Our method also makes the observation and quantification of the synchronization of leaves possible. (C) 2016 American Association of Physicists in Medicine
更多
查看译文
关键词
ArcCHECK,quality assurance,Tomotherapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要