Reverse indentation size effects in gamma irradiated blood compatible blend films of chitosan-poly (vinyl alcohol) for possible medical applications.

MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS(2017)

引用 23|浏览1
暂无评分
摘要
In the present work binary blends of polyvinyl alcohol (WA) and chitosan (CS) were prepared by solution cast method and characterized by analytical methods like FTIR, XRD and SEM for seeking structural and morphological information. The blends were exposed to gamma radiation and evaluated for their improved mechanical strength. It was found that the tensile strength and microhardness increased after irradiation of CS-PVA films. Plastic effect due to absorption of water molecules and scissoring effect due to gamma irradiation were found to decrease the softness or increase the microhardness of the blends. Improved mechanical properties were attributed to intermolecular and intramolecular hydrogen bonds and adhesive nature of the blends also. The blends were also investigated for water intake behavior and in vitro blood compatibility property on the basis of certain in vitro tests like protein adsorption, haemolysis and blood clot formation on the un-irradiated and irradiated blend samples. The increased % swelling with time could be assigned to the fact that increasing water content facilitates the phase separation process within the blend which results in advancement in interstitial nano-void spaces which are occupied by water molecules. The blood compatibility results showed that when the amount of CS was varied from 0.5% to 2%, the amount of blood clot and percent haemolysis decreased while the protein adsorption increased with increasing CS content of the blend films. (C) 2016 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Blood compatibility,Polymer blends,Gamma radiation,Chitosan,Microhardness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要