Reconstruction of Anterior Tracheal Defects Using a Bioengineered Graft in a Porcine Model.

The Annals of Thoracic Surgery(2017)

引用 12|浏览6
暂无评分
摘要
Background. Reconstruction of long-segment tracheal defects can be challenging and a suitable tracheal substitute remains lacking. We sought to create a bioengineered tracheal graft to repair such lesions using acellullar bovine dermis extracellular matrix (ECM) and male human mesenchymal stem cells (hMSCs) and implant it in a porcine model. Methods. hMSCs were seeded on the ECM and incubated for 1 week with chondrogenic factors. An anterior 4 cm x 3 cm defect was surgically created in the trachea of 4-week-old female Yorkshire pigs. The defect was reconstructed using the bioengineered graft (n = 7) or control (n = 3, ECM only). The study duration was 3 months. Results. Survival ranged from 7 days (n = 3) to 3 months (n = 7). Early death was due to graft malacia (n = 1, control), graft infection (n = 1, bioengineered), and pneumonia (n = 1, bioengineered). There was substantial animal growth at 3 months (> 200% weight). Surveillance bronchoscopy showed patent airway, mild stenosis, and integration of the graft with the native trachea. On histology, luminal epithelialization and neovascularization with scant submucosa were observed in both the bioengineered graft and control groups. Chondrogenesis was seen only in the bioengineered graft. The neocartilage was less mature and organized compared to native cartilage. SRY immunostain was positive in the neocartilage but not control or native trachea. Conclusions. We demonstrate the feasibility of the bioengineered graft for reconstruction of long anterior tracheal defects with favorable short-term outcomes. Furthermore, we show its ability to facilitate chondrogenesis, neovascularization, and epithelialization. Importantly, it supported rapid animal growth offering potential solutions for both pediatric and adult applications. (C) 2017 by The Society of Thoracic Surgeons
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要