Evaluation of automated time-lapse microscopy for assessment of in vitro activity of antibiotics.

Journal of microbiological methods(2016)

引用 8|浏览8
暂无评分
摘要
This study aimed to evaluate the potential of a new time-lapse microscopy based method (oCelloScope) to efficiently assess the in vitro antibacterial effects of antibiotics. Two E. coli and one P. aeruginosa strain were exposed to ciprofloxacin, colistin, ertapenem and meropenem in 24-h experiments. Background corrected absorption (BCA) derived from the oCelloScope was used to detect bacterial growth. The data obtained with the oCelloScope were compared with those of the automated Bioscreen C method and standard time-kill experiments and a good agreement in results was observed during 6-24h of experiments. Viable counts obtained at 1, 4, 6 and 24h during oCelloScope and Bioscreen C experiments were well correlated with the corresponding BCA and optical density (OD) data. Initial antibacterial effects during the first 6h of experiments were difficult to detect with the automated methods due to their high detection limits (approximately 105CFU/mL for oCelloScope and 107CFU/mL for Bioscreen C), the inability to distinguish between live and dead bacteria and early morphological changes of bacteria during exposure to ciprofloxacin, ertapenem and meropenem. Regrowth was more frequently detected in time-kill experiments, possibly related to the larger working volume with an increased risk of pre-existing or emerging resistance. In comparison with Bioscreen C, the oCelloScope provided additional information on bacterial growth dynamics in the range of 105 to 107CFU/mL and morphological features. In conclusion, the oCelloScope would be suitable for detection of in vitro effects of antibiotics, especially when a large number of regimens need to be tested.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要