Virus-like attachment sites as structural landmarks of plants retrotransposons

Mobile DNA(2016)

引用 3|浏览13
暂无评分
摘要
Background The genomic data available nowadays has enabled the study of repetitive sequences and their relationship to viruses. Among them, long terminal repeat retrotransposons (LTR-RTs) are the largest component of most plant genomes, the Gypsy and Copia superfamilies being the most common. Recently it has been found that Del lineage, an LTR-RT of Gypsy superfamily, has putative virus-like attachment ( vl-att ) sites. This signature, originally described for retroviruses, is recognized by retroviral integrase conferring specificity to the integration process. Results Here we retrieved 26,092 putative complete LTR-RTs from 10 lineages found in 10 fully sequenced angiosperm genomes and found putative vl-att sites that are a conserved structural landmark across these genomes. Furthermore, we reveal that each plant genome has a distinguishable LTR-RT lineage amplification pattern that could be related to the vl-att sites diversity. We used these patterns to generate a specific quick-response (QR) code for each genome that could be used as a barcode of identification of plants in the future. Conclusions The universal distribution of vl-att sites represents a new structural feature common to plant LTR-RTs and retroviruses. This is an important finding that expands the information about the structural similarity between LTR-RT and retroviruses. We speculate that the sequence diversity of vl-att sites could be important for the life cycle of retrotransposons, as it was shown for retroviruses. All the structural vl-att site signatures are strong candidates for further functional studies. Moreover, this is the first identification of specific LTR-RT content and their amplification patterns in a large dataset of LTR-RT lineages and angiosperm genomes. These distribution patterns could be used in the future with biotechnological identification purposes.
更多
查看译文
关键词
Angiosperm genomes,LTR-RTs,Retrotransposons,vl-att site
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要