Single Residue Substitutions That Confer Voltage-Gated Sodium Ion Channel Subtype Selectivity in the NaV1.7 Inhibitory Peptide GpTx-1.

JOURNAL OF MEDICINAL CHEMISTRY(2016)

引用 45|浏览21
暂无评分
摘要
There is interest in the identification and optimization of new molecular entities selectively targeting ion channels of therapeutic relevance. Peptide toxins represent a rich source of pharmacology for ion channels, and we recently reported GpTx-1 analogs that inhibit Na(V)1.7, a voltage-gated sodium ion channel that is a compelling target for improved treatment of pain. Here we utilize multi-attribute positional scan (MAPS) analoging, combining high-throughput synthesis and electrophysiology, to interrogate the interaction of GpTx-1 with Na(V)1.7 and related Na-V subtypes. After one round of MAPS analoging, we found novel substitutions at multiple residue positions not previously identified, specifically glutamic acid at positions 10 or 11 or lysine at position 18, that produce peptides with single digit nanomolar potency on Na(V)1.7 and 500-fold selectivity against off-target sodium channels. Docking studies with a Na(V)1.7 homology model and peptide NMR structure generated a model consistent with the key potency and selectivity modifications mapped in this work.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要