Percolation in spatial evolutionary prisoner's dilemma game on two-dimensional lattices.

PHYSICAL REVIEW E(2015)

引用 8|浏览3
暂无评分
摘要
We study the spatial evolutionary prisoner's dilemma game with updates of imitation max on triangular, hexagonal, and square lattices. We use the weak prisoner's dilemma game with a single parameter b. Due to the competition between the temptation value b and the coordination number z of the base lattice, a greater variety of percolation properties is expected to occur on the lattice with the larger z. From the numerical analysis, we find six different regimes on the triangular lattice (z = 6). Regardless of the initial densities of cooperators and defectors, cooperators always percolate in the steady state in two regimes for small b. In these two regimes, defectors do not percolate. In two regimes for the intermediate value of b, both cooperators and defectors undergo percolation transitions. The defector always percolates in two regimes for large b. On the hexagonal lattice (z = 3), there exist two distinctive regimes. For small b, both the cooperators and the defectors undergo percolation transitions while only defectors always percolate for large b. On the square lattice (z = 4), there exist three regimes. Combining with the finite-size scaling analyses, we show that all the observed percolation transitions belong to the universality class of the random percolation. We also show how the detailed growth mechanism of cooperator and defector clusters decides each regime.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要