Chemical and morphological inter- and intrapopulation variability in natural populations of Gentiana pneumonanthe L.

CHEMISTRY & BIODIVERSITY(2019)

引用 7|浏览7
暂无评分
摘要
Inter- and intrapopulation variability in six natural populations of the rare species Gentiana pneumonanthe was examined based on morphological and chemical data. Population size and linear morphometric parameters differed significantly among populations, but without a clear connection to habitat conditions, i. e. water supply and light availability. Leaf shape varied from ovate to lanceolate in all populations, and one population was distinctive in having the largest number of leaves of transitional shape. HPLC analyses of six secondary metabolites were performed separately for belowground parts, and aboveground vegetative and reproductive parts of individual plants (6 populations x7 individuals x3 plant parts, n=126) in order to examine differences at the population and individual levels. Three secoiridoids (swertiamarin (SWM), sweroside (SWZ), and gentiopicrin (GP)), one xanthone (mangiferin (MGF)), and two flavones (isoorientin (IO) and isovitexin (IV)) were detected and quantified in the analyzed samples: sweroside dominated in the aboveground reproductive part, mangiferin in the aboveground vegetative part, and gentiopicrin in the belowground part. At the population level, differences in contents of the analyzed chemicals among populations were significant only for a few metabolites. At the individual level, a pronounced organ-dependent distribution of secondary metabolites was revealed. The results of this study contribute to a better understanding of natural variability within populations of the rare and threatened G. pneumonanthe, and provide data on the contents and within-plant distribution of secondary metabolites, which are important as pharmacologically active compounds and may be useful for further biotechnological procedures regarding this species.
更多
查看译文
关键词
Gentiana pneumonanthe,marsh gentian,secoiridoids,mangiferin,natural habitat,population variability,natural products,biological activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要