Correction to Acid-Induced Activated Cell-Penetrating Peptide-Modified Cholesterol-Conjugated Polyoxyethylene Sorbitol Oleate Mixed Micelles for pH-Triggered Drug Release and Efficient Brain Tumor Targeting Based on Charge Reversal Mechanism.

ACS applied materials & interfaces(2020)

引用 36|浏览8
暂无评分
摘要
Glioblastoma multiforme is the most devastating malignant brain tumor in adults. Even with standard-care of therapy, the prognosis remains dismal due to tumor heterogeneity, tumor infiltration, and more importantly, the restrictive nature of the blood-brain barrier (BBB). To overcome the challenge of effectively delivering therapeutic cargo into the brain, herein a "smart," multifunctional polymeric micelle was developed using a cholesterol-conjugated polyoxyethylene sorbitol oleate. A cell penetrating peptide, arginine-glycine repeats (RG)5, was incorporated into the micelles to improve cellular uptake while a pH-sensitive masking sequence, histidine-glutamic acid repeats (HE)5, was introduced for charge shielding to minimize non-specific binding and uptake at physiological pH values. Results demonstrated that (RG)5 and (HE)5 modified mixed micelles were optimized using this strategy to effectively mask the cationic charges of the activated cell-penetrating peptide (RG)5 at physiological pH, i.e. limiting internalization, and were selectively triggered in response to a mildly acidic microenvironment in vitro based on a charge reversal mechanism. In vivo results further confirmed that such micelles preferentially accumulated in both brain and tumor tissues in both xenograft and orthotropic glioma mouse models. Furthermore, micelles significantly inhibited tumor growth with limited toxicity to peripheral tissues. The combination of BBB penetration, tumor targeting, potent efficacy, and high tolerance of these micelles strongly suggest that they could be a promising candidate for safe and effective drug delivery to the brain.
更多
查看译文
关键词
polyoxyethylene sorbitol oleate,pH-responsive micelles,acid-induced activated,cell penetrating peptide,charge shielding,brain tumor targeting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要