Drip fertigation significantly reduces nitrogen leaching in solar greenhouse vegetable production system.

Environmental pollution (Barking, Essex : 1987)(2018)

引用 103|浏览49
暂无评分
摘要
Vegetable production in solar greenhouses in northern China results in the excessive use of nitrogen (N) fertilizers and water via flooding irrigation. Both factors result in low N use efficiency and high environmental costs because groundwater becomes contaminated with nitrate (NO3-). Four consecutive tomato (Lycopersicum esculentum Mill.) cropping seasons were tested whether drip fertigation and/or the incorporation of maize straw (S) may significantly reduce NO3- and dissolved organic N (DON) leaching while increasing the water-use efficiency (WUE) and partial factor productivity of applied N (PFPN) of the tomatoes. The following treatments were used: ① conventional flooding irrigation with overfertilization (CIF, 900 kg N ha-1 season-1), ② CIF + S, ③ drip irrigation with optimized fertilization (DIF, 400 kg N ha-1 season-1), ④ DIF + S. We found that (1) DIF significantly increases the PFPN and WUE by 262% and 73% without compromising the yield compared with CIF, respectively. (2) For CIF, approximately 50% of the total N input was leached at a NO3-/DON ratio of approximately 2:1. (3) Compared with CIF, DIF reduced NO3- and DON leaching by 88% and 90%, respectively. Water percolation was positively correlated with N leaching (p < 0.001). (4) Straw application only reduced NO3- leaching losses in the first year and did not affect DON leaching overall, although DON leaching was increased in DIF in the first growing season. In conclusion, DIF significantly reduces NO3- and DON leaching losses by approximately 90% compared with the current farmer practice (CIF). Considering the significant DON leaching losses, which have been overlooked because previous measurements focused on NO3-, DON should be considered as a primary factor of environmental pollution in conventional solar greenhouse vegetable production systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要