Involvement of Carnosic Acid in the Phytotoxicity of Rosmarinus officinalis Leaves.

TOXINS(2018)

引用 20|浏览4
暂无评分
摘要
Weeds are rapidly developing resistance to synthetic herbicides, and this can pose a threat to the ecosystem. Exploring allelopathic species as an alternative weed control measure can help minimize the ecological threat posed by herbicide-resistant weeds. In this study, we aimed to evaluate the contribution of some polyphenols to the allelopathy of rosemary (Rosmarinus officinalis L.). The phytotoxic effects of rosemary (leaves, roots, inflorescences, and stems) crude extracts were tested on lettuce (Lactuca sativa L.). Soils incorporated with dried rosemary leaves were also tested on test plants. Reversed-phase high-performance liquid chromatography (HPLC) analysis was used to determine the content of some polyphenols (caffeic, ferulic, gallic, rosmarinic, carnosic, and chlorogenic acids) in rosemary. The specific activity and total activity of crude extracts and individual compounds were evaluated using lettuce. The crude extract of rosemary leaves showed the highest growth inhibitory effect among the rosemary organs tested. Soil amended with rosemary leaf debris reduced the dry matter and seed emergence of lettuce. Carnosic acid was the main compound detected in rosemary leaves and had a high specific activity when tested on lettuce. During the seed germination period, there was observed filter paper coloration among the test plants treated with carnosic acid (250 g/mL). The high concentration and strong inhibitory effect of carnosic acid could explain the inhibitory activity of the rosemary leaf extract. Hence, we conclude based on the total activity estimation that carnosic acid among the other tested compounds is the major allelochemical in rosemary leaves.
更多
查看译文
关键词
Rosmarinus officinalis,carnosic acid,allelopathy,total activity,specific activity,inhibitory,phytotoxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要