Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics.

Neuropharmacology(2019)

引用 19|浏览17
暂无评分
摘要
The serotonin transporter (SERT) is one of the primary targets for medications to treat neuropsychiatric disorders and functions by exploiting pre-existing ion gradients of Na+, Cl−, and K+ to translocate serotonin from the synaptic cleft into the presynaptic neuron. Although recent hSERT crystal structures represent a milestone for structure-function analyses of mammalian neurotransmitter:sodium symporters, they are all derived from thermostabilized but transport-deficient constructs. Two of these structures are in complex with paroxetine, the most potent selective serotonin reuptake inhibitor known. In this study, by carrying out and analyzing the results of extensive and comparative molecular dynamics simulations while also re-evaluating the transport and binding properties of the thermostabilized constructs, we identified functionally important structural elements that are perturbed by these mutations, revealed unexpected dynamics in the central primary binding site of SERT, and uncovered a conceivable ambiguity in paroxetine's binding orientation. We propose that the favored entropy contribution plays a significant role in paroxetine's extraordinarily high affinity for SERT. Our findings lay the foundation for future mechanistic studies and rational design of high-affinity SERT inhibitors.
更多
查看译文
关键词
Paroxetine,Serotonin transporter,Selective serotonin reuptake inhibitors,Conformational thermostabilization,X-ray crystallography,Molecular dynamics simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要