Dysregulation of let-7 by PEG modified graphene oxide in nematodes with deficit in epidermal barrier.

Ecotoxicology and Environmental Safety(2019)

引用 34|浏览6
暂无评分
摘要
In nematode Caenorhabditis elegans, epidermal RNA interference (RNAi) knockdown of bli-1 encoding a cuticular collagen caused the toxicity induction of GO-PEG (PEG surface modified graphene oxide). In this study, we further found that epidermal RNAi knockdown of bli-1 increased expression of a microRNA let-7, and let-7 mutation suppressed the susceptibility of bli-1(RNAi) nematodes to GO-PEG toxicity. let-7 regulated the toxicity induction of GO-PEG by suppressing expression and function of its direct targets (HBL-1 and LIN-41). Like the nematodes with epidermal RNAi knockdown of bli-1, epidermal RNAi knockdown of hbl-1 or lin-41 also induced functional abnormality in epidermal barrier. Therefore, a signaling cascade of BLI-1-let-7-HBL-1/LIN-41 was raised to be involved in GO-PEG toxicity induction. Our data imply the dysregulation of let-7-mediated molecular machinery for developmental timing control by GO-PEG in nematodes with deficit in epidermal barrier caused by bli-1(RNAi).
更多
查看译文
关键词
PEG modified graphene oxide,BLI-1,Epidermal barrier,Nanotoxicity,let-7,Caenorhabditis elegans
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要