Dilute Fluid Governed by Quantum Fluctuations.

PHYSICAL REVIEW LETTERS(2018)

引用 46|浏览6
暂无评分
摘要
Understanding the effects of interactions in complex quantum systems beyond the mean-field paradigm constitutes a fundamental problem in physics. We show how the atom numbers and interactions in a Bose-Bose mixture can be tuned to cancel mean-field interactions completely. The resulting system is entirely governed by quantum fluctuations-specifically the Lee-Huang-Yang correlations. We derive an effective one-component Gross-Pitaevskii equation for this system, which is shown to be very accurate by comparison with a full two-component description. This allows us to show how the Lee-Huang-Yang correlation energy can be accurately measured using two powerful probes of atomic gases: collective excitations and radio-frequency spectroscopy. Importantly, the behavior of the system is robust against deviations from the atom number and interaction criteria for canceling the mean-field interactions. This shows that it is feasible to realize a setting where quantum fluctuations are not masked by mean-field forces, allowing investigations of the Lee-Huang-Yang correction at unprecedented precision.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要