Knockdown of MicroRNA-1 in the Hippocampus Ameliorates Myocardial Infarction Induced Impairment of Long-Term Potentiation.

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY(2018)

引用 10|浏览13
暂无评分
摘要
Backgrounds/Aims: It has been reported that myocardial infarction (MI) is a risk factor for vascular dementia. However, the molecular mechanism remains largely unknown. Methods: MI mice were generated by ligation of the left coronary artery (LCA) for 4 weeks. Passive and active avoidance tests were performed to evaluate the cognitive ability of MI mice. A theta-burst stimulation (TBS) protocol was applied to elicit long-term potentiation (LTP) of the perforant pathway-dentate gyrus synapse (PP-DG). Western blot analysis was employed to assess protein levels. Results: In this study, we demonstrated that after 4 weeks of MI, C57BL/6 mice had significantly impaired memory. Compared with the sham group, in vivo physiological recording in the MI group revealed significantly decreased amplitude of population spikes (PS) with no effect on the latency and duration of the stimulus-response curve. The amplitude of LTP was markedly decreased in the MI group compared with the sham group. Further examination showed that the expression of the TBS-LTP-related proteins BDNF, GluA1 and phosphorylated GluA1 were all decreased in the MI group compared with those in the sham group. Strikingly, all these changes were prevented by hippocampal stereotaxic injection of an anti-miR-1 oligonucleotide fragment carried by a lentivirus vector (lenti-pre-AMO-1). Conclusion: MI induced cognitive decline and TBS-LTP impairment, and decreased BDNF and GluA1 phosphorylation levels from overexpression of miR-lated were involved in this process. (c) 2018 The Author(s) Published by S. Karger AG, Basel
更多
查看译文
关键词
Heart,Hippocampus,Cognitive impairment,MicroRNA-1,BDNF,long-term potentiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要