Porous decellularized trachea scaffold prepared by a laser micropore technique.

Yongjun Zhang, Yong Xu,Yanqun Liu, Dan Li,Zongqi Yin, Yingying Huo,Gening Jiang,Yong Yang, Zongxin Wang,Yaqiang Li, Fangjia Lu,Yi Liu, Liang Duan,Guangdong Zhou

Journal of the mechanical behavior of biomedical materials(2018)

引用 37|浏览46
暂无评分
摘要
Rapid development of tissue engineering technology provides new methods for tracheal cartilage regeneration. However, the current lack of an ideal scaffold makes engineering of trachea cartilage tissue into a three-dimensional (3-D) tubular structure a great challenge. Although a decellularized trachea matrix (DTM) has become a recognized scaffold for trachea cartilage regeneration, it is difficult for cells to detach from or penetrate the matrix because of its non-porous structure. To tackle these problems, a laser micropore technique (LMT) was applied in the current study to enhance trachea sample porosity, and facilitate decellularizing treatment and cell ingrowth. Furthermore, after optimizing LMT and decellularizing treatment parameters, LMT-treated DTM (LDTM) retained its natural tubular structure with only minor extracellular matrix damage. Moreover, compared with DTM, the current study showed that LDTM significantly improved the adherence rate of cells with perfect cell biocompatibility. Moreover, the optimal implantation cell density for chondrogenesis with LDTM was determined to be 1 × 108 cells/ml. Collectively, the results suggest that the novel LDTM is an ideal scaffold for trachea tissue engineering.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要