Regenerative stormwater conveyance (RSC) for reducing nutrients in urban stormwater runoff depends upon carbon quantity and quality.

The Science of the total environment(2018)

引用 15|浏览13
暂无评分
摘要
Regenerative stormwater conveyance (RSC), a relatively new stormwater management approach, is extensively implemented throughout the mid-Atlantic for nutrient control, but little is known of its pollutant reduction capabilities and controlling factors. This study examined effects of organic carbon (C) quantity and quality on stream water quality and nutrient retention at two RSCs near Annapolis, Maryland, USA by comparing longitudinal changes in water quality at paired restored and unrestored stream reaches, and conducting lab experiments simulating RSC processes. Results showed that RSCs consistently had lower dissolved oxygen saturation (DO%) and pH relative to nearby unrestored streams, probably due to release of labile dissolved organic carbon (DOC). At one RSC, with high nitrate (NO3-) inputs, retention of N (16-37%) and release of DOC (18-54%) were observed with the highest retention of N during summer, and the rates of N retention and DOC release were larger than that of the adjacent unrestored tributary (N: 5-8%, DOC: <18%). At another RSC site with lower NO3- concentrations, N retention and DOC release were not apparent. Mesocosm experiments showed that NO3- retention varies with organic C quantity and quality depending on incubating temperature; retention of total N did not increase with organic C due to release of other N species (e.g., organic N). Lab mesocosms showed an increase in the release of soluble reactive phosphorus (SRP) with increasing organic C quantity and quality. However, field measurements did not show any evidence of SRP release at RSCs. The changes in SRP concentrations in streams seemed to be a function of iron levels and leaf litter inputs, but control factors for SRP warrant further investigation. This study suggests that RSC as a restoration approach may be effective for reducing N depending upon C quantity and quality as well as water temperature and N levels.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要