CRISPR-Cas9 facilitated multiple-chromosome fusion in Saccharomyces cerevisiae.

ACS synthetic biology(2018)

引用 5|浏览9
暂无评分
摘要
Eukaryotic cells usually contain multiple linear chromosomes. Recently, we artificially created a functional single-chromosome yeast via sequential two-chromosome fusion utilizing the high performance of the CRISPR-Cas9 system and homologous recombination in Saccharomyces cerevisiae. In this paper, we adapted this method for the simultaneous fusion of multiple chromosomes. We demonstrated the fusion of two, two-chromosome sets with a 75% positive rate and three-chromosome fusions with a 50% positive rate. We also found that by using an additional selection marker, the positive rate of two-chromosome fusions reached 100%. Due to the simplicity, efficiency and portability of this method, we expect that it can be easily adapted for multiple-chromosome fusions in other organisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要