S1PR2 antagonist alleviates oxidative stress-enhanced brain endothelial permeability by attenuating p38 and Erk1/2-dependent cPLA2 phosphorylation.

Cellular signalling(2018)

引用 34|浏览15
暂无评分
摘要
Both sphingosine-1-phosphate receptor-2 (S1PR2) and cytosolic phospholipase A2 (cPLA2) are implicated in the disruption of cerebrovascular integrity in experimental stroke. However, the role of S1PR2 in induction of cPLA2 phosphorylation during cerebral ischemia-induced endothelial dysfunction remains unknown. This study investigated the effect of S1PR2 blockade on oxidative stress-induced cerebrovascular endothelial barrier impairment and explored the possible mechanisms. In bEnd3 cells, cPLA2 inhibitor CAY10502 as well as S1PR2 antagonist JTE013 profoundly suppressed hydrogen peroxide (H2O2)-induced changes of paracellular permeability and ZO-1 localization. Besides p38, extracellular signal-regulated kinase (Erk) 1/2 is required for H2O2-increased cPLA2 phosphorylation and endothelial permeability. Pharmacological and genetic inhibition of S1PR2 significantly suppressed their phosphorylation in response to H2O2. Especially lentivirus-mediated knockdown of S1PR2 inhibited H2O2-induced ZO-1 redistribution and paracellular hyperpermeability. Using the permanent middle cerebral artery occlusion (pMCAO) mouse model, we found JTE013 pretreatment markedly reduced Evans blue dye (EBD) extravasation and reversed the decrease in VE-cadherin, occludin, claudin-5 and CD31 expression in infarcted hemisphere. Lentivirus-mediated S1PR2 knockdown also attenuated EBD extravasation. Furthermore, JTE013 pretreatment attenuated neurological deficit, brain edema and infarction volume. Therefore, our findings suggest the protective effect of JTE013 on brain endothelial barrier integrity is likely mediated by suppressing p38 and Erk1/2-dependent cPLA2 phosphorylation under oxidative stress.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要