Tankyrases maintain homeostasis of intestinal epithelium by preventing cell death.

PLOS GENETICS(2018)

引用 15|浏览15
暂无评分
摘要
Lgr5(+) intestinal stem cells are crucial for fast homeostatic renewal of intestinal epithelium and Wnt/beta-catenin signaling plays an essential role in this process by sustaining stem cell self-renewal. The poly(ADP-ribose) polymerases tankyrases (TNKSs) mediate protein poly-ADP-ribosylation and are involved in multiple cellular processes such as Wnt signaling regulation, mitotic progression and telomere maintenance. However, little is known about the physiological function of TNKSs in epithelium homeostasis regulation. Here, using Villin-creERT2;Tnks1(-/-);Tnks2(fI/fI) (DKO) mice, we observed that loss of TNKSs causes a rapid decrease of Lgr5(+) intestinal stem cells and magnified apoptosis in small intestinal crypts, leading to intestine degeneration and increased mouse mortality. Consistently, deletion of Tnks or blockage of INKS activity with the inhibitor XAV939 significantly inhibits the growth of intestinal organoids. We further showed that the Wnt signaling agonist CHIR99021 sustains the growth of DKO organoids, and XAV939 does not cause growth retardation of Apc(-/-)organoids. Consistent with the promoting function of TNKSs in Wnt signaling, Wnt/beta-catenin signaling is significantly decreased with stabilized Axin in DKO crypts. Together, our findings unravel the essential role of TNKSs-mediated protein parsylation in small intestinal homeostasis by modulating Wnt/beta-catenin signaling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要