Astragaloside IV attenuates lead acetate-induced inhibition of neurite outgrowth through activation of Akt-dependent Nrf2 pathway in vitro.

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease(2017)

引用 15|浏览3
暂无评分
摘要
Recently, oxidative stress is strongly associated with lead (Pb)-induced neurotoxicity. We reported previously that Astragaloside IV (AS-IV) possesses potent antioxidant properties. Here, we evaluate the hypothesis that AS-IV attenuates lead acetate (PbAc)-mediated inhibition of neurite outgrowth might mainly result from its antioxidant property via serine/threonine protein kinase (Akt)-dependent activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Interestingly, AS-IV attenuates PbAc-induced inhibition of neurite outgrowth and displayed potential antioxidant properties by inhibiting reactive oxygen species (ROS). Concomitantly, AS-IV enhanced phase II detoxifying enzymes such as heme oxygenase 1 (HO-1), thioredoxin reductase (TrxR), and glutamate cysteine ligase catalytic subunit (GCLc). Conversely, AS-IV had no effect on GCL modulatory subunit (GCLm) and superoxide dismutase (SOD) activity/expression. Furthermore, AS-IV evoked Akt phosphorylation, and subsequent induced phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 (that is, inactivation), which stimulated Nrf2-mediated antioxidant response element (ARE)-containing activation. Importantly, Akt locates upstream of GSK-3β and regulates phase II detoxifying enzymes gene expression through Nrf2 nuclear accumulation in PC12 cells exposed to PbAc. Noteworthy, these results were further confirmed through signalling pathway inhibitors, dominant negative mutant and short hairpin RNA technology. Collectively, these in vitro findings suggest that AS-IV attenuates PbAc-induced inhibition of neurite outgrowth attributed to its antioxidant properties and may be a promising candidate for the treatment of lead developmental neurotoxicity.
更多
查看译文
关键词
Astragaloside IV,Oxidative stress,Neurite outgrowth,Lead acetate,Nrf2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要