Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells.

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease(2017)

引用 67|浏览19
暂无评分
摘要
A pathological hallmark of Alzheimer disease and other tauopathies is the formation of neurofibrillary tangles mainly composed of bundles of fibrils formed by microtubule-associated protein Tau. Here we study the effects of Zn2+ on abnormal aggregation and cytotoxicity of a pathological mutant ΔK280 of full-length human Tau. As revealed by Congo red binding assays, transmission electron microscopy, immunofluorescence, Western blot, and immunogold electron microscopy, pathological concentration of Zn2+ dramatically accelerates the fibrillization of ΔK280 both in vitro and in SH-SY5Y neuroblastoma cells. As evidenced by annexin V-FITC apoptosis detection assay and MTT reduction assay, pathological concentration of Zn2+ remarkably enhances ΔK280 fibrillization-induced apoptosis and toxicity in SH-SY5Y cells. Substitution of Cys-291 and Cys-322 with Ala, however, essentially eliminates such enhancing effects of Zn2+ on the fibrillization and the consequent cytotoxicity of ΔK280. Furthermore, Zn2+ is co-localized with and highly enriched in amyloid fibrils formed by ΔK280 in SH-SY5Y cells. The results from isothermal titration calorimetry show that Zn2+ binds to full-length human Tau by interacting with Cys-291 and Cys-322, forming a 1:1 Zn2+-Tau complex. Our data demonstrate that zinc dramatically accelerates abnormal aggregation of human Tau and significantly increases Tau toxicity in neuronal cells mainly via bridging Cys-291 and Cys-322. Our findings could explain how pathological zinc regulates Tau aggregation and toxicity associated with Alzheimer disease.
更多
查看译文
关键词
AD,TEM,ThS,PI,DAPI,IAPP,TDP-43,MTT,ITC,GSK-3β
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要