Near-Apneic Ventilation Decreases Lung Injury and Fibroproliferation in an ARDS Model with ECMO.

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE(2019)

引用 68|浏览29
暂无评分
摘要
Rationale: There is wide variability in mechanical ventilation settings during extracorporeal membrane oxygenation (ECMO) in patients with acute respiratory distress syndrome. Although lung rest is recommended to prevent further injury, there is no evidence to support it. Objectives: To determine whether near-apneic ventilation decreases lung injury in a pig model of acute respiratory distress syndrome supported with ECMO. Methods: Pigs (26-36 kg; n = 24) were anesthetized and connected to mechanical ventilation. In 18 animals lung injury was induced by a double-hit consisting of repeated saline lavages followed by 2 hours of injurious ventilation. Then, animals were connected to high-flow venovenous ECMO, and randomized into three groups: 1) nonprotective (positive end-expiratory pressure [PEEP], 5 cm H2O; VT, 10 ml/kg; respiratory rate, 20 bpm), 2) conventional-protective (PEEP, 10 cm H2O; VT, 6 ml/kg; respiratory rate, 20 bpm), and 3) near-apneic (PEEP, 10 cm H2O; driving pressure, 10 cm H2O; respiratory rate, 5 bpm). Six other pigs were used as sham. All groups were maintained during the 24-hour study period. Measurements and Main Results: Minute ventilation and mechanical power were lower in the near-apneic group, but no differences were observed in oxygenation or compliance. Lung histology revealed less injury in the near-apneic group. Extensive immunohistochemical staining for myofibroblasts and procollagen III was observed in the nonprotective group, with the near-apneic group exhibiting the least alterations. Near-apneic group showed significantly less matrix metalloproteinase-2 and -9 activity. Histologic lung injury and fibroproliferation scores were positively correlated with driving pressure and mechanical power. Conclusions: In an acute respiratory distress syndrome model supported with ECMO, near-apneic ventilation decreased histologic lung injury and matrix metalloproteinase activity, and prevented the expression of myofibroblast markers.
更多
查看译文
关键词
acute respiratory distress syndrome,extracorporeal membrane oxygenation,ventilator-induced lung injury,mechanical ventilation,myofibroblast
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要