Showcasing the application of synchrotron-based X-ray computed tomography in host-pathogen interactions: the role of wheat rachilla & rachis nodes in Type-II resistance to Fusarium graminearum.

PLANT CELL AND ENVIRONMENT(2019)

引用 8|浏览1
暂无评分
摘要
Fusarium head blight, caused primarily by Fusarium graminearum (Fg), is one of the most devastating diseases of wheat. Host resistance in wheat is classified into five types (Type-I to Type-V), and a majority of moderately resistant genotypes carry Type-II resistance (resistance to pathogen spread in the rachis) alleles, mainly from the Chinese cultivar Sumai 3. Histopathological studies in the past failed to identify the key tissue in the spike conferring resistance to pathogen spread, and most of the studies used destructive techniques, potentially damaging the tissue(s) under study. In the present study, nondestructive synchrotron-based phase contrast X-ray imaging and computed tomography techniques were used to confirm the part of the wheat spike conferring Type-II resistance to Fg spread, thus showcasing the application of synchrotron-based techniques to image host-pathogen interactions. Seven wheat genotypes of moderate resistance to Fusarium head blight were studied for changes in the void space volume fraction and grayscale/voxel intensity following Fg inoculation. Cell-wall biopolymeric compounds were quantified using Fourier-transform midinfrared spectroscopy for all genotype-treatment combinations. The study revealed that the rachilla and rachis nodes together are structurally important in conferring Type-II resistance. The structural reinforcement was not necessarily observed from lignin deposition but rather from an unknown mechanism.
更多
查看译文
关键词
cereals,Fusarium head blight,infrared spectroscopy,plant imaging,scab,spike,X-ray phase contrast imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要